Combining Weak Learning Heuristics in General Problem Solvers

نویسنده

  • T. L. McCluskey
چکیده

This paper is concerned with state space problem solvers that achieve generality by learning strong heuristics through experience in a particular domain. We specif ically consider two ways of learning by analysing past solutions that can improve future problem solving: creating macros and the chunks. A method of learning search heuristics is specified which is related to 'chunking' but which complements the use of macros within a goal directed system. An example of the creation and combined use of macros and chunks, taken from an implemented system, is described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of the Metacognitive Knowledge of Weak and Strong Students in Problem Solving

This study sought to compare the metacognitive knowledge profile of weak and strong students in problem solving. For achieving this purpose, one hundred students of the second educational District of Tehran were chosen by cluster sampling. They responded individually to the questions of "the Metacognitive Questionnaire Interview" and in the next step their performance in the pendulum problem so...

متن کامل

Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance

In many combinatorial domains, simple stochastic algorithms often exhibit superior performance when compared to highly customized approaches. Many of these simple algorithms outperform more sophisticated approaches on difficult benchmark problems; and often lead to better solutions as the algorithms are taken out of the world of benchmarks and into the real-world. Simple stochastic algorithms a...

متن کامل

On multiple learning schemata in conflict driven solvers

In this preliminary paper we describe a general approach for multiple learning in conflict-driven SAT solvers. The proposed formulation of the conflict analysis task turns out to be expressive enough to reckon with different orthogonal generalizations of the standard learning schemata, such as the conjunct analysis of multiple conflicts, the generation of possibly interdependent learned clauses...

متن کامل

Driving CDCL Search

The CDCL algorithm is the leading solution adopted by state-of-theart solvers for SAT, SMT, ASP, and others. Experiments show that the performance of CDCL solvers can be significantly boosted by embedding domainspecific heuristics, especially on large real-world problems. However, a proper integration of such criteria in off-the-shelf CDCL implementations is not obvious. In this paper, we disti...

متن کامل

Between Restarts and Backjumps

This paper introduces a novel technique that significantly reduces the computational costs to perform a restart in conflict-driven clause learning (CDCL) solvers. Our technique exploits the observation that CDCL solvers make many redundant propagations after a restart. It efficiently predicts which decisions will be made after a restart. This prediction is used to backtrack to the first level a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1987